Competing weak localization and weak antilocalization in ultrathin topological insulators.

نویسندگان

  • Murong Lang
  • Liang He
  • Xufeng Kou
  • Pramey Upadhyaya
  • Yabin Fan
  • Hao Chu
  • Ying Jiang
  • Jens H Bardarson
  • Wanjun Jiang
  • Eun Sang Choi
  • Yong Wang
  • Nai-Chang Yeh
  • Joel Moore
  • Kang L Wang
چکیده

We demonstrate evidence of a surface gap opening in topological insulator (TI) thin films of (Bi(0.57)Sb(0.43))(2)Te(3) below six quintuple layers through transport and scanning tunneling spectroscopy measurements. By effective tuning the Fermi level via gate-voltage control, we unveil a striking competition between weak localization and weak antilocalization at low magnetic fields in nonmagnetic ultrathin films, possibly owing to the change of the net Berry phase. Furthermore, when the Fermi level is swept into the surface gap of ultrathin samples, the overall unitary behaviors are revealed at higher magnetic fields, which are in contrast to the pure WAL signals obtained in thicker films. Our findings show an exotic phenomenon characterizing the gapped TI surface states and point to the future realization of quantum spin Hall effect and dissipationless TI-based applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observation of Anderson localization in ultrathin films of three-dimensional topological insulators.

Anderson localization, the absence of diffusive transport in disordered systems, has been manifested as hopping transport in numerous electronic systems, whereas in recently discovered topological insulators it has not been directly observed. Here, we report experimental demonstration of a crossover from diffusive transport in the weak antilocalization regime to variable range hopping transport...

متن کامل

Crossover between Weak Antilocalization and Weak Localization of Bulk States in Ultrathin Bi2Se3 Films

We report transport studies on the 5 nm thick Bi₂Se₃ topological insulator films which are grown via molecular beam epitaxy technique. The angle-resolved photoemission spectroscopy data show that the Fermi level of the system lies in the bulk conduction band above the Dirac point, suggesting important contribution of bulk states to the transport results. In particular, the crossover from weak a...

متن کامل

Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions

Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions ...

متن کامل

Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator.

We report transport studies on magnetically doped Bi(2)Se(3) topological insulator ultrathin films grown by molecular beam epitaxy. The magnetotransport behavior exhibits a systematic crossover between weak antilocalization and weak localization with the change of magnetic impurity concentration, temperature, and magnetic field. We show that the localization property is closely related to the m...

متن کامل

Competition between weak localization and antilocalization in topological surface states.

A magnetoconductivity formula is presented for the surface states of a magnetically doped topological insulator. It reveals a competing effect of weak localization and weak antilocalization in quantum transport when an energy gap is opened at the Dirac point by magnetic doping. It is found that, while random magnetic scattering always drives the system from the symplectic to the unitary class, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2013